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Abstract. We document the creation of a new set of OpenMath content
dictionaries to support the expression of quantities and units under the
International System of Units (SI). While preserving many of the con-
cepts embodied in the original content dictionaries, these new content
dictionaries provide a foundation for quantities and units that is compli-
ant with international standards. We respond to questions raised in prior
efforts to create content dictionaries for units and dimensions by propos-
ing and applying some rationalized criteria for the creation of content
dictionaries in general. The results have been released and submitted to
the OpenMath website as contributed content dictionaries.

1 Introduction

We are interested in the creation of a scientific markup for representing physics
based models. In pursuing this objective, we have not found a sufficient body
of markup for creating documents representing physics based models, rather
we find we must develop further markup constructs in order to create such
documents. Luckily, we find that we can build upon a developing body of work
in mathematical markup. The first step in this endeavor, from a bottom-up
perspective, is to properly address the representation of quantities and units.

OpenMath [1] represents a significant effort amongst the various attempts at
representing mathematical knowledge, particularly in the problem area of repre-
senting mathematical semantics using web-oriented standards. Scientific knowl-
edge is a mixture of mathematical representations and references to experiments
and measurements. One of the fundamental intersections of this dual nature of
scientific knowledge is in the representation of quantities and units. An initial
attempt to capture some units and physical dimensions [2], [3] has resulted in
several OpenMath content dictionaries (CDs). The prior OpenMath CDs we re-
fer to are: dimensions1, units metric1, units imperial1, units us1, units time1,
units siprefix, units ops1, and physical consts1. In these efforts, some attention
has been paid to observing conventions specified in the International System of
Units, or Le Système International d’Unités, hereinafter simply referred to as SI,
as expressed in [4], [5], and [6]. In these efforts there is an admitted incomplete-
ness with respect to adherence to the SI in the implementation of the associated
OpenMath CDs for units and dimensions.
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Our work here is an attempt to improve the representation of dimensions
and units within OpenMath by building an new set of explicit SI CDs, following
the current SI standard [7]. We do this in an attempt to close the gap between
OpenMath CDs for units and dimensions and the expression of the formal stan-
dards of units and dimensions embodied in the SI. In this paper, we document
a proposed restructuring of OpenMath CDs for units and dimensions, as well as
attempt to provide answers to questions raised in prior efforts.

1.1 Guiding Principles

Prior to beginning this exposition, we review some of the guiding principles
that we have developed and used. First, the SI represents a few things: a long-
standing, slowly evolving international consensus; a well developed set of coher-
ent standards for quantities and units; and a standard that dominates other,
similar standards. Other standards, such as Imperial units and United States
units, many of which predate the SI, have, over time, typically been redefined in
terms of SI standards, and are largely in a process of being officially phased out.
One of the purposes of the SI is to provide, from a few defined standard units, a
way to repeatably measure all physical quantities. As such, the SI is, foremost,
a standard based on physical measurement, not a mathematical standard. The
definition of quantities, units, and their properties is essentially a posteriori, fol-
lowing from observation. While it is not generally anticipated that there would
be major changes in these observations, in principle, if there were a distinct
change, the meanings of what are defined in the SI would change. This being
said, there is an observed mathematical structure to the concepts of quantities
and units. This observed mathematical structure constitutes a physical theory,
rather than mathematical truth: our acceptance of its truth rests primarily on
consistency with observation and measurement. Being mathematical in nature,
a physical theory’s truth requires mathematical consistency, but the simplicity
or complexity of its mathematical nature does not determine its validity. Neither
can the mathematical nature of a physical theory be determined a priori. Much
of the mathematical structure of quantities and units is described in the SI, and
we intend to capture it as far as possible within the OpenMath framework.

While most non-specialists are familiar with the concept of units, the con-
cept of quantities is perhaps somewhat more esoteric, particularly as the SI
addresses it. Most importantly, some care is required in discussions of quantities
and units, as colloquial usage may often be incorrect with respect to the SI.
Many preconceptions may have to be abandoned for old habits to be replaced
with SI compliant usage.

While embarking on this effort we were faced with several issues regarding
how to make best use of OpenMath CDs. OpenMath and Content MathML [8]
both embrace the concept that it is not only possible, but desirable, to separate
the expression of mathematical semantics from the expression of the presenta-
tion of various mathematical symbols commonly in use. We advocate observing
this distinction and avoiding the temptation to mix them more than might be
necessary. In the development of content markup, we also suggest applying the
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following three criteria, as defined below: lack of ambiguity, convenience, and
simplicity.

Ambiguity is anathema to content markup. Different from presentation markup,
content markup loses utility if there is ambiguity in semantics. We suggest that
ambiguity in mathematical semantics is tolerable, even desirable, in presentation
markup. Presentation options of a given concept may overlap with presentation
options of other concepts, potentially giving rise to ambiguity. In presentation,
ambiguity is usually balanced with economy in the space allotted to symbols,
relying on a context of implicit conventions. Presumably, a coherent set of pre-
sentation options can, and should, be documented in a style guide and perhaps
implemented using a style sheet based translator operating on a document hav-
ing content markup. Such an accompanying style guide can alleviate problems
of ambiguity in the presentation markup.

By simplicity in content markup, one thing we mean is that we try to avoid
implementing redundant constructs. While having multiple ways to express the
semantics of a particular concept is not wrong, simplicity in a content markup
language, i.e., having only one principal way to express a certain concept, seems
desirable. Simplicity means fewer symbols to remember and will otherwise aid in
the use of content markup, for example, in minimizing the job of writing transla-
tors for presentation of content. In Content MathML and OpenMath, operators
and functions are currently represented in prefix form without much redundancy.
For example, a prefix divide symbol represents the concept of division. While a
presentation markup certainly does support alternative symbolic expressions of
the operation of division, it is unnecessary for content markup to do so. Infix
variations of division operators are not needed in content markup. Consequently,
we do not insist that content markup include the various symbolic representa-
tions of division: an obelus symbol, a vinculum symbol, or a virgule or solidus
symbol. By contrast, we suggest that this type of simplicity is not as impor-
tant in presentation markup as it is in content markup. Presentation options of
particular concepts need to be as numerous as the presentation conventions one
intends to support, such as all of the above representations of the operation of
division.

This does not mean there should never be any overlapping semantics: divide is
redundant with exponentiation with negative integers. We find this redundancy
acceptable because it is convenient to support both divide and power symbols,
and it can be done without ambiguity. By convenience we mean that we may
implement a possibly redundant set of concepts, usually because it is easier to
do so than not to do so. Clearly, there are trade-offs between simplicity and
convenience and the decision as to what is right and proper is subjective: the
overarching consideration is overall economy of effort for the whole enterprise of
implementation and use of the markup.

In sum, when faced with a question of what is the best way to represent
a particular concept, we find we must first consider whether it relates to: a
scientific or measurement issue; a presentation issue; or a mathematical semantic
issue. Secondly, in deciding whether to represent a particular concept, we must
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consider how to justify it based on principles of simplicity, convenience, and
resolving ambiguity. We apply these guiding principles in the following sections.

2 SI Quantities

Quantities are a fundamental concept within the SI, where quantity is defined
[7] as a “property of a phenomenon, body, or substance, where the property has
a magnitude that can be expressed by means of a number and a reference”. This
reference means a reference amount of the same kind of quantity, called a unit.
The magnitude is the number of unit amounts of the quantity required to be
equal to the amount possessed by the object of interest.

The concept of quantities arises in multiple physical contexts, from the very
specific to the abstract. For example, we can refer to the length of the specific
piece of furniture standing in front of us, the wavelength of an arbitrary frequency
of light, or the general concept of length. The objective is to be able to express
all of these. From the SI definition, one can see that the concept of quantity is
complex, and must have a combination of properties, which include a dimension,
a kind, a unit, and a magnitude. The dimension, kind, and unit properties each
have label, or name, values, and the dimension and unit properties also have SI
symbol values, essentially abbreviated aliases of the names. A magnitude must
have a numerical value expressed in some unit. These are discussed below.

2.1 Quantity Dimension

The most primitive concept of physics markup is that of physical dimension.
With this property, mathematics is transformed to enable representation of phys-
ical quantities. We here define physical dimension, according to common usage,
to include that which is defined as the quantity dimension in the SI standard. In
this usage, the term physical dimension, such as is used in dimensional analysis,
refers not only to the SI quantity dimension, but also to general SI quantities,
including SI derived quantities.

The use of the term dimension in SI, as it relates to physical dimension, is,
however, much more restrictive. The quantity dimensions in systems of quantities
and units are given by the products of powers of a set of base quantities. As
such, the base quantities form a basis for the space of quantity dimensions.
Any system of quantities can, using its own set of base quantities, define a
basis with which to span some space of physical dimensions. For the SI, there
are seven base quantities: length, mass, time, electric current, thermodynamic
temperature, amount of substance, and luminous intensity. The full set of SI
quantity dimensions are generated by products of powers of these specific base
quantities. Physical dimensions that are not in this set of SI quantity dimensions
are not referred to as dimensions within SI. A different system of quantities might
define a separate set of base quantities, consequently having a different set of
quantity dimensions.
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Derived quantities, as defined by SI, are quantities, in a system of quantities,
which are defined in terms of the base quantities of that system. The SI requires
that all quantities in the system be defined in terms of a product of powers of the
base quantities. The SI introduces the concept of a mapping, dim, which maps a
derived quantity to a quantity dimension. The requirement that all SI quantities
be defined in terms of products of powers of base quantities essentially constitutes
the definition of this mapping, dim. The SI does not bound the number of derived
quantities that may be introduced.

Mathematical Structure of Quantity Dimensions The mathematical struc-
ture of quantity dimensions in SI is summarized as follows: There are seven
base quantities, length, mass, time, electric current, thermodynamic tempera-
ture, amount of substance, and luminous intensity. The base quantities, with the
inclusion of an eighth, variously named quantity of dimension one, or dimen-
sionless quantity, form an abelian generating set for the infinite abelian group of
objects variously referred to as quantity dimensions, dimensions of a quantity,
or just dimensions. The group multiplication operator is compatible with the
multiplication operator for the field of real numbers. In addition to the base
quantities, there is an unbounded set of derived quantities, which, in the SI, are
defined by a name and a non-injective mapping to a quantity dimension,

dim : derived quantities → quantity dimensions. (1)

When two quantities, Q1 and Q2, are said to be dimensionally equivalent, this
means that dim(Q1) = dim(Q2). In addition to multiplication, each quantity
dimension may be raised to any real power, though only rational powers ever
seem necessary.

2.2 Kind of Quantity

The next property of a quantity is that of the kind of quantity. The kind of
a quantity distinguishes between different quantities that may have the same
quantity dimensions. The SI concedes that the concept of the kind of a quantity
is to some extent arbitrary. Nevertheless, it is a necessary distinction. Perhaps
the best illustration is by way of examples. The salinity of a solution is typi-
cally stated as a mass fraction, i.e. the mass of dissolved salt per unit of mass
of solution. As such, salinity is a dimensionless quantity, i.e., mass/mass = 1.
Angle is also dimensionless, given, for example, in radians as the ratio of the
length of the subtended circular arc and the radius of the same circle. While di-
mensionally equivalent, one still considers salinity and angle to be distinct kinds
of quantities. There are many dimensionless quantities distinguished by kind.
Similarly, the quantities torque and energy have the same quantity dimension
but are distinguished from each other by being different kinds of quantities.

Similar to the mapping, dim, we introduce the concept of another map-
ping, kind, implicit in the SI, which maps a quantity to a quantity kind. Com-
plete equivalence of two quantities, Q1 and Q2, can only occur when both
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dim(Q1) = dim(Q2) and kind(Q1) = kind(Q2) are true. While the SI recog-
nizes that quantities may differ in kind, it does not standardize the definition of
kind.

Distinction of quantities by kind can have rather fundamental consequences.
The distinction between inertial mass, the resistance to acceleration due to an
applied force in Newton’s second law, and gravitational mass, the proportional
factor by which an object influences other objects through the force of gravity
in Newton’s law of universal gravitation, was once debated. This debate was
famously settled with Einstein’s principle of equivalence and subsequent exper-
imental measurements. We discuss later the import of differences in kinds of
quantities.

2.3 Units

A unit is a defined reference amount of a given quantity. Having a unit, any
quantity of the same kind may then be expressed as equivalent to some numer-
ical amount of the reference quantity. For example, an arbitrary mass may be
expressed as a numerical amount times a reference amount of mass. In the SI
system of units, there are seven base units: the metre, kilogram, second, am-
pere, kelvin, mole, and candela, corresponding to the seven SI base quantities.
There is a necessary one-to-one mapping between the base quantities and the
base units. An additional unit, one, is added, corresponding to the dimensionless
base quantity.

The essential reason for identifying the base units is that they serve as the
measurement standards for most physical measurements. If, for example, we
wanted to measure the length of something, we would need to calibrate our
length-measuring device using a standard length. In SI, that standard length is
the metre, and its definition is in terms of a measurement procedure. The same
is true for all of the base units: each is defined in terms such that they may be
readily used to calibrate measurement equipment for the corresponding physical
quantity. This is referred to as the practical realization of the base units.

Similar to the dim mapping, the SI also posits a unit mapping with a range
that is the set of products of powers of the SI base units, i.e., the set of coherent
derived units. The domain of the unit mapping is the set of all quantities defined
within the SI. As there is for each derived quantity a mapping to an SI quantity
dimension, so too is there a mapping to a coherent derived unit. Because of this,
the meaning of a quantity is defined in physically measurable terms, i.e., the
base unit definitions. There can be no circular definitions, or any definitions of
measurable quantities that are not rooted in definable measurements.

A limited number of coherent derived units are given special names. These
named coherent derived units are: radian, steradian, hertz, newton, pascal, joule,
watt, coulomb, volt, farad, ohm, siemens, weber, tesla, henry, degree Celsius,
lumen, lux, becquerel, gray, sievert, and katal.

Mathematical Structure of Units: The mathematical structure of units in
SI is summarized as follows: There are seven base units, metre, kilogram, second,



7

ampere, kelvin, mole, and candela. The base units, with the inclusion of the unit
named one, with symbol, 1, form an abelian generating set for the infinite abelian
group of objects called the coherent derived units. The multiplication operator
of this group of coherent derived units is compatible with the multiplication
operator for the field of real numbers.

There is a one-to-one mapping of quantity dimensions to coherent derived
units,

unit : quantity dimensions → coherent derived units. (2)

The unit of any quantity, Q, is given by unit(dim(Q)).

2.4 Magnitude of a Quantity

The magnitude of a specific scalar physical quantity represents the amount of
that quantity, i.e., a mathematical product of a real number and a reference
quantity, or unit. For example, the kilogram is the reference mass that resides at
the International Bureau of Weights and Measures (BIPM) in Sèvres, France. In
the SI system, the masses of all other physical objects are measured in propor-
tion to that standard kilogram, where the proportion is expressed as a limited
precision real number. There is also an accompanying error value, representing
an estimate of the standard deviation, were an ensemble of such measurements
to have been conducted. By default, when not specified, the error in a number
is assumed to be half of the place value of the least significant digit expressed.

The SI introduces the concept of an operator that returns the numerical value
of a quantity. We denote this mapping, num:

num : quantities → real numbers. (3)

Any quantity, Q, may be represented in the system by the unique product
num(Q) · unit(Q). Clearly, while an arbitrary quantity is independent of unit
system, num and unit are specific to a particular system of units, e.g., the SI.

Vector quantities, including complex numbers and tensors, are used in some
situations. A full treatment of these is not possible here, partly because Open-
Math currently expresses Cartesian vectors, but not vectors in other coordinates,
e.g., spherical coordinates. When vector quantities are used, they may either be
heterogeneous, where each component may be a distinct quantity, or homoge-
neous, where the components are pure numbers and the unit may be represented
as a distinct factor. It should be noted that multiplication of base units with vec-
tor magnitudes is very much like scalar multiplication: when vector quantities
fail to commute, it is the num parts of the quantities that fails to commute, not
the unit parts. Extending the definition of the num mapping is straightforward
for the much more common case of homogeneous Cartesian vectors of quantities,
for example,

num((3m, 5m, 7m)) = (3, 5, 7). (4)

The representation of standard error with vector quantities is typically in terms
of a covariance structure, a subject not elaborated in the SI, or here.
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3 Operations on Quantities and Units

There are several operations that are defined on quantities and units. There are
those that are specific to a system of quantities and units, namely dim, kind, unit,
and num. The SI explicitly defines the dim, unit, and num mappings. In the SI,
the unit mapping is symbolically represented with square brackets, and the num
symbol is represented with curly braces. We add to this the kind mapping which
provides some distinction between quantities which may be dimensionally equiv-
alent. The equivalence of two quantities requires the equivalence of all four of
these properties, i.e., two arbitrary quantities, Q1 and Q2, are equivalent if and
only if dim(Q1) = dim(Q2), kind(Q1) = kind(Q2), and num(Q1) = num(Q2).
(If dim(Q1) = dim(Q2), then unit(Q1) = unit(Q2)). The SI also specifies the
multiplication, division, and raising of quantities to powers as required for the
meaningful construction of quantities and units. If a quantity, say Qx , is ex-
pressed in a non-SI unit, say Ux , conversion may be effected by having defined
unit(Ux) when Ux itself is defined. Such conversions must be linear transforma-
tions: affine, or additive conversion, such as the conversion of thermodynamic
temperature from kelvin to degree Fahrenheit, are not defined within this space
of units and these operators. On the other hand, conversion of kelvin to degree
Rankine is well defined.

3.1 Other Operations

There are several natural language usages which, with respect to dimensions
and units, imply various mathematical operations. We partition these into the
following categories: one, times, per, and plus; SI prefixes; cube, cubic, square,
and squared.

One, Times, Per, and Plus: The dimensionless base quantity, one, and its
corresponding unit, one, are essentially synonymous with the mathematical sym-
bol of the same name. The presence of the unit or quantity dimension one in
a quantity expression that we may want to represent in markup is generally
implied, though rarely required explicitly. In text, multiplication is implied by
juxtaposition of quantity names, using either a space (invisible times), a dot
symbol, a hyphen, etc., and encoding such expressions into markup should fol-
low those implications. As we have stated, multiplication of base quantities and
base units is associative, commutative and otherwise compatible with multipli-
cation of the real numbers, so the order of the encoded terms with respect to
each other and numerical scalars is, in general, not semantically significant.

The term per, as in metre per second, implies an infix division operator, and
could be encoded as such as long as it is unambiguously used.

The arbitrary addition of quantities, as pointed out for temperature, for
example, in [3], is not always physically meaningful. In general, the SI does not
discuss addition of quantities. We point out here that addition of quantities
is undefined for quantities that are not of the same kind, without leaving out
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the possibility of additional constraints on addition of quantities. Similarly, the
arithmetic relational operators equals, greater than, less than, etc., are only
meaningful when quantities are of the same kind. The question as to whether
quantities are of the same kind is really only answered by experimental validation
of a law of physics. A law of physics is typically phrased as an arithmetic relation
of quantities, implying the additivity of quantities involved. Arbitrary relations
of quantities may be mathematically well defined without possessing physical
meaning. Sometimes, as in the case of temperature, it is possible to identify
different kinds of temperature, e.g., absolute (thermodynamic) temperature and
relative temperature. The SI allows the definition, presumably by any user, of
such derived quantities. The assignment of a value to the kind mapping in the
definition of any such quantity, is also, presumably, left to the user, as is the
task of ensuring the validity of the physical semantics.

SI Prefixes: SI prefixes are normally used by prepending a single prefix to
an SI base unit, with the exception of the kilogram. For mass quantities, the
prefix is prepended to the term gram as if it were the base unit, though gram is
not presented without such a prefix. SI prefixes act like multiplicative numerical
constants, each an integer power of 10. Normally, it is the user’s choice to express,
for example, 1000 microgram, 1 milligram, or 10−6 kilogram. Whichever choice
is of no consequence for semantic content.

For capture of the semantic value of SI prefixes, we suggest the following:
a) the use of an empty element for each occurrence of a named prefix; b) the
allowance in content markup of multiple occurrences of prefixes (forbidden by
SI in presentation); c) the abandonment of an OpenMath prefix symbol in the
units ops1 CD in preference to the multiplication operator, times. The enforce-
ment of the SI-required, normal form of only using single prefixes is a presenta-
tion constraint, without mathematical meaning. It may be recommended practice
in content markup, but should not be required.

Cube, Cubic, Square, Squared The derived units square metre, cubic me-
tre, metre squared, metre cubed are cases where the terms square and cubic act
like prefix exponent operators, and squared and cubed act like postfix exponent
operators. If used, a hyphen is interpreted as an infix multiplication operator.
Similarly, metre per second and metre/second are cases where the symbols per
and “/” act like infix division operators. In each of these cases, unless there is a
compelling reason for supporting infix, postfix, or alternative, redundant prefix
operators, simplicity and maintaining compatibility with the existing OpenMath
mathematical CDs with times, divide, and power symbols suggests using the ex-
isting prefix forms of these same operations.

3.2 Appending of Units

While it may, in the expression of a quantity in markup, be good practice to
append units to a numerical expression, this has no mathematical semantic value.
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The associativity and commutativity of multiplication of units with each other
and with the numerical magnitudes makes the meaning clear regardless of order.
The SI requirement to express the units of a quantity after the numerical value
is strictly a prescription of a standard presentation form. Its practice may be
recommended, but should not be required in content markup.

4 Number Representations

There are three requirements for numerical representations of quantities: range
of absolute magnitudes, precision, and uncertainty. Magnitudes of physical con-
stants and their uncertainties range from 10−72 to 1050 in SI units. The known
material universe is estimated to be made up of approximately 1080 nucleons.
Expressed in Planck units (not typically used for everyday physics) the overall
size of the known universe is on the order of 1062 Planck lengths, the age is on
the order of 1062 Planck times, and the mass of the order 1062 Planck masses.
Any number representation should be able to support expression of numbers
of these magnitudes. The current upper limit of precision of measurement for
physical constants is about twelve to thirteen significant decimal digits, such as
for the Rydberg constant.

While it may be ideal to have a format for arbitrary precision and arbitrary
magnitude measurable values, IEEE double precision format [9] provides about
16 significant decimal digits and magnitudes spanning 10308 to 10−308. While it
is not inconceivable that physics-based computations may exceed the dynamic
range the IEEE double precision format, for most practical purposes, that format
appears adequate for the present.

Unambiguous representation of a limited precision real number requires the
use of a scientific notation with significand of limited length and an exponent.
Scientific notation is needed to express, for example, exactly two significant digits
of 6.2× 103, instead of writing 6200, the latter being ambiguous. Depending on
how the significand of a double precision format is interpreted, the semantics of
the precision limit of a measurement can be lost in the conversion to and from
machine double precision. Machine formats do not typically support an inherent
precision of a number which is distinct from the machine precision. From a
semantic perspective, the machine precision is merely the maximum precision
that may represented in a machine word, not the actual precision of the value
that needs to be represented.

The IEEE double precision format does not in itself support the expression
of measurement precision, which is really a form of uncertainty. Considering
that in the conversion of a double precision literal to a machine double the
limit of precision expressed in the literal is usually lost, it appears necessary to
provide a separate mechanism for explicitly expressing the limit of precision, or
for expressing the uncertainty. As such, we find it necessary to represent the
concept of standard error for representing measured quantities, i.e., an estimate
of the standard deviation, as a way to capture adequately the normal expression
of uncertainty for scalar numerical magnitudes. Interpretation of uncertainties
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as bounded ranges, for example, is not standard practice. Proper treatment of
uncertainty is sufficiently complex that we do not here provide a solution to
this requirement, but suggest that more information, either an accompanying
integer to represent the number of significant digits, or an accompanying float
magnitude, will be needed to represent the standard error.

5 Physical Constants and Other Measured Quantities

Historically, the standardization of units began with units of practical interest,
and as such are inherently anthropocentric. Over time, these have been sup-
planted with units having sizes that are still anthropocentric, but being defined
in ways more amenable to increasingly precise scientific measurement. Neverthe-
less, any measurement device will have bounded precision. As a result, there are
many scientifically measurable quantities that are difficult to capture adequately
using only SI units.

The SI base units provides a set of units for representing the bulk of every-
day quantities. It is possible, however, due to limits of precision in measurement
apparatus, that macroscopic standards, such as the kilogram, are inadequate for
measuring very small or very large quantities, such as the masses of quantities
smaller than a microgram. It is known, for example, that the standard kilogram
varies on the scale of micrograms, so it is not well defined to a corresponding
precision. Electron and nucleon masses are significantly smaller than this. To ad-
equately represent measurements of quantities having a combination magnitude
and precision that fall outside the SI base units, and measurement equipment
that uses them, the SI provides some other, off-system, measured units. The
values of these in terms of SI units are obtained experimentally. These units are
the electronvolt, the dalton, and the astronomical unit as units of energy, mass,
and length, respectively.

An alternative system of units that is frequently used by physicists, for ex-
ample, in studying cosmology and quantum gravity, are Planck units. The mag-
nitudes of Planck units and the measurement apparatus required to gauge them
make them inappropriate for use in anthropocentric applied physics. Planck units
are sometimes called “God’s units”, as they comprise a natural or intergalac-
tic standard set of units, completely defined using universal constants. The five
Planck units are the Planck length, Planck mass, Planck time, Planck charge,
and Planck temperature. They are completely defined in terms of the following
five universal physical constants: the Newton’s gravitational constant, the re-
duced Planck constant, the speed of light, the Coulomb force constant, and the
Boltzmann constant. They are largely defined by experimental measurement,
and updated measured values are published periodically by, for example, the
international organization CODATA. These Planck units and the constants that
define them are intrinsic to the physical laws that appear to describe the origins
of the universe and physics as we know it. Consequently, other unit systems and
fundamental constants are seen as derivative with respect to these.
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6 Proposed Modifications to the OpenMath CD library

We agree with prior work on the definition of quantity dimensions and units
as empty XML elements. This appears to be their most natural representation.
We do, however, recommend the reorganization of the dimension and unit CDs
appropriate to the properties of the SI quantities and units.

We believe that SI quantity and unit CDs should be specifically labeled
as such, and the base units and quantities separately identified. Other systems
having their own base quantities and units should similarly be distinctly labeled.
Non-SI units and quantities should not be freely intermixed with SI quantities
and units, but should be coupled in some way so as to distinguish them from
units defined with respect to a different system. For example, while the contents
of the dimensions1 CD may all be thought of as dimensions, in SI there are only
seven base quantities serving as quantity dimensions. Other quantity dimensions
are products of powers of these base quantities, i.e., derived via mathematical
rules of construction, and generally need not be individually defined. For these
reasons, we introduce the SI BaseQuantities1 CD and suggest the deprecation
of any SI base quantities from the dimensions1 CD. The SI BaseQuantities1
CD defines length, mass, time, current, temperature, amount of substance, and
luminous intensity. We additionally introduce the corresponding SI BaseUnits1
CD and suggest the deprecation of SI base units from the existing CDs where
they occur. The SI BaseUnits1 CD defines metre, kilogram, second, ampere,
kelvin, mole, and candela. For completeness, in both the SI BaseQuantities1
and SI BaseUnits1 CDs we include the symbol one, equating it to the symbol of
the same name found in the OpenMath alg1 CD.

As the SI base quantities and units are defined as standards, the definition
and a reference to the defining documents should be explicitly cited within those
CDs. These definitions are generally sufficiently brief to be described within the
OpenMath Description elements. Typically, new unit standards are ratified by
a standards body at a periodically held conference, so a citation should, for
example, name the conference and year. A change in SI definitions should prompt
new versions of these CDs.

Derived quantities are those that are defined in terms of the base quantities.
Some derived quantities are defined in the SI, particularly when they have names
that are not mathematically constructed, or have corresponding specially named
units. While the SI admits an unlimited number of derived quantities, and can
only specify rules for their creation, it is reasonable to identify as SI quantities
and units those that are specifically mentioned in the standard. For this reason
we introduce SI DerivedQuantities1, which defines angle, solid angle, frequency,
force, pressure, energy, power, charge, voltage, capacitance, resistance, conduc-
tance, magnetic flux, magnetic flux density, inductance, Celsius temperature,
luminous flux, illuminance, radioactivity, absorbed dose, equivalent dose and
catalytic activity which all have named SI units.

Correspondingly, we define in SI NamedDerivedUnits1 the radian, steradian,
hertz, newton, pascal, joule, watt, coulomb, volt, farad, ohm, siemens, weber,
tesla, henry, degree Celsius, lumen, lux, becquerel, gray, sievert, and katal. We
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also include in SI NamedDerivedUnits1 the exceptional implied unit, gram. We
include the gram because, even though its SI compliant presentation requires
use of a prefix, the gram is the semantic root of all SI mass units. In the interest
of simplicity, we believe that unit names that reflect mathematical construction,
such as metre per second, or metre squared, should not be included in CDs.

SI DerivedQuantities1 may, in principle, include all derived quantities that
are compliant with SI. There is no mathematical bound in the number of such
quantities that may be defined. OpenMath custom is to not make content dictio-
naries arbitrarily large. No clear means of restricting the size in general suggests
itself. We include in SI DerivedQuantities1, somewhat arbitrarily, the quantities
area, volume, speed, momentum, moment of force, density, concentration, heat,
and entropy along with those quantities that have their own SI units, simply
because these additional quantities are specifically mentioned within the SI.

6.1 SI Symbols

Each SI base quantity and base unit, and the named units corresponding to some
derived quantities, have names with prescribed spellings, as well as associated
SI symbols which act as abbreviated names, such as “m” for metre. In the spirit
of first identifying what is necessary for semantic capture and in the spirit of
simplicity, we use the SI names of quantities and units for their OpenMath sym-
bol names in the CDs, choosing those over the short, SI symbols as being less
ambiguous and less subject to errors in usage. In OpenMath, the presentation of
many symbols is not emphasized. For example, the gradient operator does not
reference the nabla symbol. Accordingly, it seems that we can, in general, ne-
glect the representation of the semantically redundant SI symbols in OpenMath
CDs. As a compromise, we suggest that symbols be identified in the Description
element of the CDDefinition for reference purposes.

6.2 Capitalization and Abbreviation

Persons names are not capitalized in SI unit names, with the single exception of
“degree Celsius”. Person’s names are capitalized when used in quantity names.
Otherwise capitals are only used when the dimension and unit names begin
a sentence. The SI symbols for units may have capitals: one should consult
the standard for specific values. Abbreviations of unit and quantity names are
explicitly barred. While these are principally presentation considerations, we
follow these conventions in the symbol definitions within the CDs.

6.3 Non-SI Units

There are many non-SI units in use, with varying degrees of status with re-
spect to the SI. There are the following four categories of units: coherent SI
units; non-SI units accepted for use with the SI; non-SI units that have been
deprecated; other non-SI units. Off-system, or non-SI units are those that are
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not coherent SI units. For example, minute, hour, and day are off-system units,
defined in terms of the second of time and retained for use with the SI. The
degree, minute, second, and gon of arc, and the litre are all defined in terms
of SI units and retained for use with SI units. Similarly, the measured units
mentioned earlier, the electronvolt, the dalton, and the astronomical unit, are
off-system units, but used with SI. We propose two CDs to represent the cate-
gory of non-SI units accepted for use with the SI: SIUsed OffSystemUnits1 and
SIUsed OffSystemMeasuredUnits1. We choose to distinguish the Planck units
and the physical constants that define them in their own CD, called Universal-
PhysicalConstants.

We decline to propose CDs for other non-SI units at this time. Instead, we
suggest some criteria for their construction. Many, if not most, non-SI units have
been redefined in terms of SI units. Units not defined or mentioned in the SI
should appear in non-SI CDs with their corresponding definition in terms of SI
units. For example, the most common foot is the international foot. Since the
international foot overrides other foot standards, we would recommend its Open-
Math symbol be merely named foot, not international foot. In 1958 the United
States and countries of the Commonwealth of Nations defined the length of the
international foot to be equal to 0.3048 metre. This should be defined using
formal mathematical property statements, and both the unit and num symbols,
in this case, unit(foot) = metre and num(foot) = 0.3048. (Following this conven-
tion of defining non-SI units will allow straightforward unit conversions). Other,
less common, foot units may have an OpenMath symbol distinguished in name,
such as the United States survey foot. In any case, an OpenMath Description
element should make it unambiguous which unit is being identified by citing an
appropriate standards document, as described above. Other units that are both
non-SI and undefined in terms of SI units must, of metrological necessity, be de-
fined within other unit systems. Other unit systems may be rooted in their own
content dictionaries. Units defined within other unit systems in general will have
no exact, mathematical conversions to SI units, only approximate, metrological
conversions.

6.4 Interaction with Other OpenMath Content Dictionaries

OpenMath symbols applicable to quantities and units from existing OpenMath
CDs include: zero, one, divide, minus, plus, power, product, root, sum, times,
unary minus, eq, eqs, lt, gt, neq, leq, geq, and approx.

In [2] an interesting proposal was made for using the names of physical di-
mensions as types for units. Due to questions, we do not here provide the Small
Type System (STS) CDs for the SI units and dimensions. Certainly the SI dimen-
sions would appear to qualify as being of type PhysicalDimension. One could
possibly create a new, more restrictive sub-type of PhysicalDimension, called
SI Dimension. As for an STS type for units, if we were to follow the suggestion
of using SI dimensions as types for units, there would be an infinite number of
possible types, i.e., certainly all of the possible quantity dimensions. Certainly
such a type system would be well structured. We have the means to construct
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any of them, but not to list them all. It is not clear why a single type, say
Unit, would not suffice. One of the purposes for having each physical dimension,
or quantity dimension, be a type for units, is to perform type checking. This
purpose, as well as unit checking and unit conversions for different units of the
same quantity dimension, would seem to be adequately served with the use of
the mappings, kind, dim, unit, and num.

7 Summary

In total, we propose eight new OpenMath CDs, which have been released and
submitted to the OpenMath website as contributed content dictionaries. Our
proposed SI CDs for quantities, SI BaseQuantities1 and SI DerivedQuantities1,
and the proposed criteria for accepting dimension definitions, largely make ob-
solete the prior dimensions1 OpenMath CD. Our proposed SI CDs for units,
SI BaseUnits1, and SI NamedDerivedUnits1, and the proposed criteria for ac-
cepting unit definitions, largely make obsolete the prior units metric1 OpenMath
CD. We do not suggest replacement of the units siprefix CD, though we sug-
gest deprecation of the units ops1 CD. We incorporate the above described dim,
kind, unit, and num symbols into a CD named SI Functions1. Our proposed Fun-
damentalPhysicalConstants1 is redundant with some symbols defined in physi-
cal consts1, but also introduces the non-SI Planck units. SIUsed OffSystemUnits1
replaces minute, hour, day of time in units time1. SIUsed OffSystemMeasuredUnits1,
does not affect existing CDs.

We do not comment on any particulars regarding the units imperial1 and
units us1 CDs, at this time, other than to say that since they have not been
explicitly defined in terms of SI unit CDs, we may want to redefine them in
CDs, with appropriate citations, in terms of SI units, if appropriate standards
organizations have done so.

Overall, these new CDs, as proposed, isolate the essentially physics-based SI
content into two CDs: the SI BaseUnits1, and the SIUsed OffSystemMeasuredUnits1.
The additional FundamentalPhysicalConstants1 is also essentially physics-based,
as would be any definition of measured constants or non-SI base units of other
systems. The other CDs are principally mathematical in nature, where any of
their properties attributable to the measurement process is derived by associa-
tion to symbols defined in the physics-based CDs.

Finally, we have, for lack of space and time, neglected to elaborate on the
general representation of vector quantities and the uncertainties of quantities.
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